Category: Artificial Intelligence - Page 2
KPIs and Dashboards for Monitoring Large Language Model Health
Learn the essential KPIs and dashboard practices for monitoring large language model health in production. Track hallucinations, cost, latency, and safety to prevent failures and maintain user trust.
Teaching LLMs to Say 'I Don’t Know': Uncertainty Prompts That Reduce Hallucination
Learn how to reduce LLM hallucinations by teaching models to say 'I don't know' using uncertainty prompts and structured training methods like US-Tuning - proven to cut false confidence by 67% in real-world applications.
Clean Architecture in Vibe-Coded Projects: How to Keep Frameworks at the Edges
Clean architecture in vibe-coded projects keeps AI-generated code from tainting your core logic with framework dependencies. Learn how to enforce boundaries, use tools like Sheriff, and build maintainable apps faster.
Implementing Generative AI Responsibly: Governance, Oversight, and Compliance
Learn how to implement generative AI responsibly with governance, oversight, and compliance frameworks that prevent legal risks, bias, and reputational damage. Real-world strategies for 2026.
Real-Time Multimodal Assistants Powered by Large Language Models: What They Can Do Today
Real-time multimodal assistants powered by large language models can see, hear, and respond instantly to text, images, and audio. Learn how GPT-4o, Gemini 1.5 Pro, and Llama 3 work today-and where they still fall short.
Security for RAG: How to Protect Private Documents in Large Language Model Workflows
Learn how to protect private documents in RAG systems using multi-layered security, encryption, access controls, and real-world best practices to prevent data leaks in enterprise AI workflows.
Trustworthy AI for Code: How Verification, Provenance, and Watermarking Are Changing Software Development
AI-generated code is everywhere-but without verification, provenance, and watermarking, it’s a ticking time bomb. Learn how trustworthy AI for code is changing software development in 2026.
Prompting as Programming: How Natural Language Became the Interface for LLMs
Natural language is now the primary way humans interact with AI. Prompt engineering turns simple text into powerful programs, replacing code for many tasks. Learn how it works, why it's changing development, and how to use it effectively.
Secure Human Review Workflows for Sensitive LLM Outputs
Human review workflows are essential for securing sensitive LLM outputs in regulated industries. Learn how to build a compliant, scalable system that prevents data leaks and meets GDPR and HIPAA requirements.
Data Retention Policies for Vibe-Coded SaaS: What to Keep and Purge
Vibe-coded SaaS apps collect too much data by default. Learn what to keep, what to purge, and how to use precise AI prompts to avoid GDPR fines and reduce storage costs.
Vibe Coding for IoT Demos: Simulate Devices and Build Cloud Dashboards in Hours
Vibe coding lets you build IoT device simulations and cloud dashboards in hours using AI, not code. Learn how to simulate sensors, connect to AWS IoT Core, and generate live dashboards with plain English prompts.
Customer Support Automation with LLMs: Routing, Answers, and Escalation
LLMs are transforming customer support by automating responses, smartly routing inquiries, and escalating only what needs human help. See how companies cut costs, boost satisfaction, and scale support without hiring more agents.