Author: JAMIUL ISLAM - Page 5
CCPA
Learn about your CCPA/CPRA rights regarding personal information collected by VAHU: Visionary AI & Human Understanding. Exercise your right to know, delete, or opt-out of data sharing.
Contact Us
Contact VAHU: Visionary AI & Human Understanding for questions, feedback, or collaboration on human-centered AI tools, tutorials, and ethical frameworks.
Structured vs Unstructured Pruning for Efficient Large Language Models
Structured and unstructured pruning help shrink large language models for real-world use. Structured pruning keeps hardware compatibility; unstructured gives higher compression but needs special chips. Learn which one fits your needs.
How Vocabulary Size in Large Language Models Affects Accuracy and Performance
Vocabulary size in large language models directly impacts accuracy, efficiency, and multilingual performance. Learn how tokenization choices affect real-world AI behavior and what size works best for your use case.
Keyboard and Screen Reader Support in AI-Generated UI Components
AI-generated UI components can improve accessibility, but only if they properly support keyboard navigation and screen readers. Learn how current tools work, where they fail, and how to ensure real accessibility-not just automated checks.
Memory and Compute Footprints of Transformer Layers in Production LLMs
Transformer layers in production LLMs consume massive memory and compute, with KV cache now outgrowing model weights. Learn how to identify memory-bound vs. compute-bound workloads and apply proven optimizations like FlashAttention, INT8 quantization, and SwiftKV to cut costs and latency.
Latency and Cost as First-Class Metrics in LLM Evaluation: Why Speed and Price Matter More Than Ever
Latency and cost are now as critical as accuracy in LLM evaluation. Learn how top companies measure response time, reduce token costs, and avoid hidden infrastructure traps in production deployments.
How to Use Large Language Models for Literature Review and Research Synthesis
Learn how to use large language models like GPT-4 and LitLLM to cut literature review time by up to 92%. Discover practical workflows, tools, costs, and why human verification still matters.
AI Ethics Frameworks for Generative AI: Principles, Policies, and Practice
AI ethics frameworks for generative AI must move beyond vague principles to enforceable policies. Learn how top organizations are reducing bias, ensuring transparency, and holding teams accountable-before regulation forces their hand.
Reasoning in Large Language Models: Chain-of-Thought, Self-Consistency, and Debate Explained
Chain-of-Thought, Self-Consistency, and Debate are three key methods that help large language models reason through problems step by step. Learn how they work, where they shine, and why they’re transforming AI in healthcare, finance, and science.
Self-Attention and Positional Encoding: How Transformers Power Generative AI
Self-attention and positional encoding are the core innovations behind Transformer models that power modern generative AI. They enable models to understand context, maintain word order, and generate coherent text at scale.
Vibe Coding vs AI Pair Programming: When to Use Each Approach
Vibe coding speeds up simple tasks with AI-generated code, while AI pair programming offers real-time collaboration for complex problems. Learn when to use each to boost productivity without sacrificing security or quality.